2404 independent reflections

3 standard reflections

every 200 reflections

intensity decay: none

 $R_{\rm int} = 0.028$

1511 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 3-amino-4-butanamido-5-methylbenzoate

Xiang Li,^a Lian-shan Yuan,^a Dan Wang^b and Cheng Yao^a*

^aDepartment of Applied Chemistry, College of Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and ^bBioengineering Department, Xuzhou Higher Vocational College of Bioengineering, Mine West Road, Xuzhou 221006, People's Republic of China Correspondence e-mail: yaocheng@njut.edu.cn

Received 15 March 2008; accepted 6 May 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.075; wR factor = 0.175; data-to-parameter ratio = 15.2.

The title compound, $C_{13}H_{18}N_2O_3$, is an intermediate in the synthesis of compounds with medicinial applications. The crystal structure is stabilized by intermolecular $N-H\cdots O$, $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds.

Related literature

For bond-length data, see: Allen *et al.* (1987). For related literature, see: Engeli *et al.* (2000); Goossens *et al.* (2003); Kintscher *et al.* (2004); Kurtz & Pravenec (2004); Ries *et al.* (1993).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{18}N_2O_3\\ M_r = 250.29\\ \text{Monoclinic, } P2_1/c\\ a = 10.547 \ (2) \ \text{\AA}\\ b = 16.258 \ (3) \ \text{\AA}\\ c = 8.430 \ (2) \ \text{\AA}\\ \beta = 111.69 \ (3)^{\circ} \end{array}$

 $V = 1343.2 \text{ (5) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K $0.40 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.965, T_{\rm max} = 0.991$ 2579 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.074$ 158 parameters $wR(F^2) = 0.174$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$ 2404 reflections $\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

	ם ח	TT 4	D 4	
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1-H1A\cdotsO1^{i}$	0.86	2.60	3.141 (4)	122
$N2 - H2A \cdots O2^{ii}$	0.86	2.33	3.077 (4)	145
$N2 - H2B \cdot \cdot \cdot N1$	0.86	2.46	2.780 (4)	103
$N2 - H2B \cdots O1^{i}$	0.86	2.36	3.089 (4)	142
$C11 - H11A \cdots N1$	0.96	2.45	2.901 (5)	108

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y, -z + 1.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo,1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank the Center of Testing and Analysis, Nanjing University, for supporting the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2061).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.
- Engeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension 35, 1270-1277.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Goossens, G. H., Blaak, E. E. & Baak, M. A. (2003). Obes. Rev. 4, 43-55.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Kintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci. 9, 359-369.
- Kurtz, T. W. & Pravenec, M. (2004). J. Hypertens. 22, 2253–2261.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Ries, U. J., Mihm, G. & Narr, B. (1993). J. Med. Chem. 36, 4040-4051.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1063 [doi:10.1107/S1600536808013408]

Methyl 3-amino-4-butanamido-5-methylbenzoate

X. Li, L. Yuan, D. Wang and C. Yao

Comment

3-Amino-4-butyrylamino-5-methyl-benzoic acid methyl ester is important as an intermediate in the synthesis of telmisartan, an angiotensin II receptor blocker, and in the development of obesity and related metabolic disorders in diet-induced obese mice (Ries *et al.*, 1993). Telmisartan can be used as a therapeutic tool for metabolic syndrome, including visceral obesity (Engeli *et al.*, 2000; Kintscher *et al.*, 2004; Goossens *et al.*, 2003; Kurtz *et al.*, 2004). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The aromatic ring (C3–C8) is, of course, planar.

The crystal structure is stabilized by intermolecular N—H···O, C—H···N and C—H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

4-Amino-3-methyl-benzoic acid methyl ester (8.25 g 50 mmol) was acylated with butyryl chloride (5.3 ml 50 mmol) in chlorobenzene at 373 K. The resulting amide was reacted with fuming nitric acid in sulfuric acid (60%) at 273 K. The resulting 4-(butyrylamino)-3-methyl -5-nitrobenzoic acid methyl ester was reduced with hydrogen (5 bar) and palladium (10% on charcoal) in methanol. Then palladium was filtered by suction. The produce separates as a colourless flocculent solid.

Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an ethanolic solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.98 and 0.96 Å for aromatic, methene and methyl H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Methyl 3-amino-4-butanamido-5-methylbenzoate

Crystal d	ata
-----------	-----

$C_{13}H_{18}N_2O_3$	$F_{000} = 536$
$M_r = 250.29$	$D_{\rm x} = 1.238 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 10.547 (2) Å	$\theta = 10 - 13^{\circ}$
<i>b</i> = 16.258 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 8.430 (2) Å	T = 293 (2) K
$\beta = 111.69 \ (3)^{\circ}$	Block, colourless
$V = 1343.2 (5) \text{ Å}^3$	$0.40 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.028$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.2^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.1^{\circ}$
T = 293(2) K	$h = -12 \rightarrow 11$
$\omega/2\theta$ scans	$k = 0 \rightarrow 19$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 10$
$T_{\min} = 0.965, \ T_{\max} = 0.991$	3 standard reflections
2579 measured reflections	every 200 reflections
2404 independent reflections	intensity decay: none
1511 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.075$	H-atom parameters constrained
$wR(F^2) = 0.174$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 1.5P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.002$

2404 reflections	$\Delta \rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$
158 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and isotropic o	or equivalent	t isotropic	displacement	parameters	$(Å^2)$
		r	v		7		Uico*/Uca	

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.7939 (3)	0.28652 (17)	0.4910 (3)	0.0609 (8)
H1A	0.7889	0.2893	0.3870	0.073*
01	0.9151 (2)	0.31431 (18)	0.7622 (3)	0.0722 (8)
C1	1.2201 (4)	0.4441 (3)	0.6344 (6)	0.1018 (16)
H1B	1.2826	0.4734	0.7305	0.153*
H1C	1.1791	0.4818	0.5418	0.153*
H1D	1.2685	0.4023	0.5994	0.153*
02	0.3477 (2)	0.05447 (17)	0.6104 (4)	0.0760 (8)
N2	0.7806 (3)	0.11598 (19)	0.5029 (4)	0.0669 (8)
H2A	0.7778	0.0632	0.5085	0.080*
H2B	0.8469	0.1395	0.4845	0.080*
C2	1.1113 (4)	0.4052 (3)	0.6834 (5)	0.084
H2C	1.1555	0.3715	0.7836	0.100*
H2D	1.0630	0.4487	0.7163	0.100*
03	0.2717 (2)	0.17791 (16)	0.6464 (3)	0.0690 (7)
C3	1.0098 (4)	0.3540 (2)	0.5540 (4)	0.0620 (9)
H3A	1.0570	0.3098	0.5213	0.074*
H3B	0.9645	0.3872	0.4533	0.074*
C4	0.9036 (3)	0.31730 (19)	0.6119 (4)	0.0483 (8)
C5	0.6835 (3)	0.2489 (2)	0.5237 (4)	0.0522 (8)
C6	0.5855 (3)	0.2967 (2)	0.5521 (4)	0.0543 (8)
C7	0.4796 (3)	0.2576 (2)	0.5839 (4)	0.0537 (8)
H7A	0.4141	0.2888	0.6061	0.064*
C8	0.4715 (3)	0.1723 (2)	0.5825 (3)	0.0479 (8)
C9	0.5702 (3)	0.1258 (2)	0.5536 (4)	0.0511 (8)
H9A	0.5644	0.0687	0.5541	0.061*
C10	0.6789 (3)	0.1628 (2)	0.5235 (4)	0.0515 (8)
C11	0.5897 (4)	0.3891 (2)	0.5480 (5)	0.0723 (11)

supplementary materials

H11A	0.6766	0.4066	0.5478	0.108*
H11B	0.5768	0.4109	0.6468	0.108*
H11C	0.5185	0.4088	0.4467	0.108*
C12	0.3588 (3)	0.1281 (2)	0.6125 (4)	0.0540 (8)
C13	0.1601 (4)	0.1399 (3)	0.6781 (5)	0.0876 (13)
H13A	0.1050	0.1817	0.7013	0.131*
H13B	0.1953	0.1038	0.7746	0.131*
H13C	0.1056	0.1090	0.5794	0.131*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0727 (19)	0.078 (2)	0.0357 (14)	-0.0270 (16)	0.0244 (14)	-0.0037 (14)
01	0.0547 (14)	0.120 (2)	0.0446 (13)	-0.0178 (14)	0.0212 (11)	-0.0041 (13)
C1	0.088 (3)	0.127 (4)	0.099 (3)	-0.049 (3)	0.044 (3)	-0.021 (3)
O2	0.0629 (16)	0.0679 (18)	0.106 (2)	-0.0081 (13)	0.0415 (15)	0.0052 (15)
N2	0.0536 (17)	0.074 (2)	0.082 (2)	-0.0098 (15)	0.0355 (16)	-0.0048 (17)
C2	0.084	0.084	0.084	0.000	0.031	0.000
O3	0.0547 (14)	0.0824 (18)	0.0749 (17)	-0.0004 (13)	0.0296 (13)	0.0048 (13)
C3	0.063 (2)	0.072 (2)	0.059 (2)	-0.0144 (19)	0.0328 (18)	-0.0081 (18)
C4	0.0546 (19)	0.0550 (19)	0.0413 (17)	0.0012 (16)	0.0248 (15)	-0.0036 (15)
C5	0.056 (2)	0.069 (2)	0.0284 (15)	-0.0165 (17)	0.0127 (14)	-0.0038 (15)
C6	0.060(2)	0.060 (2)	0.0363 (16)	-0.0098 (17)	0.0099 (15)	0.0002 (15)
C7	0.0500 (19)	0.061 (2)	0.0455 (18)	-0.0014 (16)	0.0124 (15)	0.0019 (16)
C8	0.0437 (17)	0.061 (2)	0.0325 (15)	-0.0059 (15)	0.0059 (13)	0.0010 (14)
C9	0.0435 (18)	0.0570 (19)	0.0483 (18)	-0.0042 (15)	0.0118 (15)	0.0038 (15)
C10	0.0456 (18)	0.066 (2)	0.0382 (16)	-0.0081 (16)	0.0102 (14)	-0.0020 (15)
C11	0.082 (3)	0.067 (2)	0.066 (2)	-0.010 (2)	0.025 (2)	0.0051 (19)
C12	0.0473 (19)	0.069 (2)	0.0418 (17)	0.0004 (18)	0.0121 (15)	0.0052 (17)
C13	0.063 (2)	0.123 (4)	0.093 (3)	0.004 (2)	0.048 (2)	0.020 (3)

Geometric parameters (Å, °)

N1—C4	1.325 (4)	С3—НЗА	0.9700
N1—C5	1.430 (4)	С3—Н3В	0.9700
N1—H1A	0.8600	C5—C6	1.384 (5)
O1—C4	1.229 (3)	C5—C10	1.400 (5)
C1—C2	1.496 (5)	C6—C7	1.394 (4)
C1—H1B	0.9600	C6—C11	1.503 (5)
C1—H1C	0.9600	С7—С8	1.391 (4)
C1—H1D	0.9600	С7—Н7А	0.9300
O2—C12	1.202 (4)	C8—C9	1.379 (4)
N2—C10	1.378 (4)	C8—C12	1.488 (4)
N2—H2A	0.8600	C9—C10	1.399 (4)
N2—H2B	0.8600	С9—Н9А	0.9300
C2—C3	1.472 (5)	C11—H11A	0.9600
C2—H2C	0.9700	C11—H11B	0.9600
C2—H2D	0.9700	C11—H11C	0.9600
O3—C12	1.333 (4)	C13—H13A	0.9600

O3—C13	1.439 (4)	C13—H13B	0.9600
C3—C4	1.500 (4)	C13—H13C	0.9600
C4—N1—C5	123.7 (2)	C5—C6—C7	118.6 (3)
C4—N1—H1A	118.1	C5—C6—C11	121.8 (3)
C5—N1—H1A	118.1	C7—C6—C11	119.5 (3)
C2—C1—H1B	109.5	C8—C7—C6	120.3 (3)
C2—C1—H1C	109.5	С8—С7—Н7А	119.8
H1B—C1—H1C	109.5	С6—С7—Н7А	119.8
C2—C1—H1D	109.5	C9—C8—C7	120.0 (3)
H1B—C1—H1D	109.5	C9—C8—C12	117.9 (3)
H1C—C1—H1D	109.5	C7—C8—C12	122.1 (3)
C10—N2—H2A	120.0	C8—C9—C10	121.3 (3)
C10—N2—H2B	120.0	С8—С9—Н9А	119.4
H2A—N2—H2B	120.0	С10—С9—Н9А	119.4
C3—C2—C1	117.2 (3)	N2—C10—C9	120.9 (3)
С3—С2—Н2С	108.0	N2—C10—C5	121.7 (3)
C1—C2—H2C	108.0	C9—C10—C5	117.4 (3)
C3—C2—H2D	108.0	C6—C11—H11A	109.5
C1—C2—H2D	108.0	C6—C11—H11B	109.5
H2C—C2—H2D	107.2	H11A—C11—H11B	109.5
C12—O3—C13	117.1 (3)	C6—C11—H11C	109.5
C2—C3—C4	114.2 (3)	H11A—C11—H11C	109.5
С2—С3—НЗА	108.7	H11B—C11—H11C	109.5
С4—С3—НЗА	108.7	O2—C12—O3	122.5 (3)
С2—С3—Н3В	108.7	O2—C12—C8	123.9 (3)
С4—С3—Н3В	108.7	O3—C12—C8	113.6 (3)
НЗА—СЗ—НЗВ	107.6	O3—C13—H13A	109.5
O1—C4—N1	120.2 (3)	O3—C13—H13B	109.5
O1—C4—C3	123.4 (3)	H13A—C13—H13B	109.5
N1—C4—C3	116.4 (3)	O3—C13—H13C	109.5
C6—C5—C10	122.3 (3)	H13A—C13—H13C	109.5
C6—C5—N1	120.4 (3)	H13B—C13—H13C	109.5
C10-C5-N1	117.2 (3)		
C1—C2—C3—C4	-179.7 (4)	C7—C8—C9—C10	-0.7 (4)
C5—N1—C4—O1	0.2 (5)	C12—C8—C9—C10	179.7 (3)
C5—N1—C4—C3	179.6 (3)	C8—C9—C10—N2	176.8 (3)
C2—C3—C4—O1	-15.3 (5)	C8—C9—C10—C5	0.0 (4)
C2—C3—C4—N1	165.4 (3)	C6-C5-C10-N2	-176.9 (3)
C4—N1—C5—C6	79.5 (4)	N1-C5-C10-N2	3.8 (4)
C4—N1—C5—C10	-101.3 (4)	C6—C5—C10—C9	-0.1 (5)
C10—C5—C6—C7	0.9 (5)	N1-C5-C10-C9	-179.3 (2)
N1—C5—C6—C7	-179.9 (3)	C13—O3—C12—O2	-1.1 (5)
C10-C5-C6-C11	-178.5 (3)	C13—O3—C12—C8	-179.6 (3)
N1-C5-C6-C11	0.7 (5)	C9—C8—C12—O2	-1.2 (5)
C5—C6—C7—C8	-1.6 (5)	C7—C8—C12—O2	179.2 (3)
C11—C6—C7—C8	177.8 (3)	C9—C8—C12—O3	177.3 (3)
C6—C7—C8—C9	1.6 (5)	C7—C8—C12—O3	-2.4 (4)
C6—C7—C8—C12	-178.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A···O1 ⁱ	0.86	2.60	3.141 (4)	122
N2—H2A···O2 ⁱⁱ	0.86	2.33	3.077 (4)	145
N2—H2B…N1	0.86	2.46	2.780 (4)	103
N2—H2B····O1 ⁱ	0.86	2.36	3.089 (4)	142
C11—H11A…N1	0.96	2.45	2.901 (5)	108
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$; (ii) $-x-1/2$;	+1, -y, -z+1.			

Fig. 1

Fig. 2

